jueves, 6 de diciembre de 2012

Movimiento Rototraslatorio.


El movimiento más general del sólido rígido es el movimiento rototraslatorio; esto es, el originado por la superposición de los dos movimientos básicos: el movimiento de traslación y el movimiento de rotación.
Consideremos un sólido rígido que está animado simultáneamente de un cierto número de movimientos de traslación y de rotación. Cada uno de los movimientos de traslación quedará completamente definido por la velocidad de traslación correspondiente; esto es, v1, v2, ... vm. Análogamente, cada una de las rotaciones quedará completamente definida por el vector velocidad angular correspondiente; esto es ω1, ω2, ... ωn. Teniendo en cuenta que un movimiento de traslación es equivalente a un par de rotaciones cuyo momento es igual a la velocidad de traslación, el estado de movimiento del sólido rígido estará definido por un conjunto de rotaciones simultáneas, ω1, ω2, ... ωn, ωn+1, ... ωn+2m, cuyos ejes de rotación pasan por los puntos O1, O2, ... On+2m .

La velocidad de un punto genérico del sólido, P, viene dada por el momento resultante del sistema de vectores deslizantes ωi (i=1, 2, ...) en el punto P; i.e.


\mathbf v_{\text{P}}=
\sum_i \overrightarrow{\text{P}\text{O}_i}\times  \boldsymbol\omega_i =
\sum_i \boldsymbol\omega_i \times \overrightarrow{\text{O}_i\text{P}}

Por otra parte, el momento del sistema de vectores deslizantes en otro punto, P′, del sólido (i.e., la velocidad del punto P′) está relacionado con el anterior mediante la expresión.


\mathbf v_{\text{P}'} = \mathbf v_{\text{P}} +
\boldsymbol\omega \times 
\overrightarrow{\text{PP}'}


siendo ω = Σωi la resultante general del sistema de vectores deslizantes (i.e., la velocidad angular resultante) que es un invariante del sistema (primer invariante o invariante vectorial).
La expresión [33] nos permite decir que la velocidad que le corresponde a un punto P′ de un sólido rígido es igual a la que le corresponde a otro punto arbitrario del mismo, P, más la velocidad que le correspondería al punto P′ en una rotación instantánea, ω, alrededor de un eje que pasase por el punto P. En definitiva, podemos enunciar:
El movimiento general de un sólido rígido (movimiento rototraslatorio) puede reducirse a una rotación de velocidad angular ω = Σωi alrededor de un eje paralelo a ω y que pasa por un punto arbitrario del sólido, más una traslación cuya velocidad es el momento resultante del sistema de vectores ωi (i=1, 2,...) con respecto a dicho punto arbitrario.
El enunciado anterior nos indica que cualquier movimiento del sólido rígido, por complejo que nos parezca, puede reducirse siempre a la superposición de dos movimientos básicos: uno de traslación y otro de rotación. Obsérvese que la velocidad de cualquier punto del sólido queda perfectamente determinada con el conocimiento de la velocidad angular ω del sólido y la velocidad vP de un punto cualquiera del mismo; i.e., por los vectores ω y vP, a los que denominaremos, conjuntamente, grupo cinemático en P.

No hay comentarios:

Publicar un comentario