Compresibilidad nula.
Una vez descrito el sistema más sencillo, formado por una sola partícula, podemos pasar a sistemas más complejos, considerándolos formados por un agregado de partículas interactuantes.
Existen toda una serie de leyes generales y teoremas de conservación para sistemas de partículas, pero aquí nos centraremos en un agregado muy concreto, que es el modelo denominado sólido rígido.
Los sistemas macroscópicos suelen clasificarse en diferentes estados de la materia: sólidos, líquidos, gases y plasmas. De estos, los tres últimos se agrupan conjuntamente en el concepto de fluidos, por oposición a los sólidos.
La diferencia entre un fluido y un sólido es que mientras el fluido se adapta a la forma del recipiente que lo contiene, el sólido no lo hace. También se distinguen en su comportamiento cuando se ejerce una fuerza tangente a su superficie (fuerza de cizalla). Un fluido adquiere una velocidad en la dirección de la fuerza (velocidad dependiente de la viscosidad del fluido), mientras que un sólido se deforma en dicha dirección.
Todos los sólidos son deformables cuando se aplica una fuerza sobre ellos, y el grado con que lo hacen se mide por su elasticidad. En el caso de un resorte, esta deformabilidad se mide con la constante de recuperación que aparece en la ley de Hooke.
Cuanto menor es la compresibilidad de un sólido (o mayor su constante de recuperación) más indeformable es, más fuerza es necesaria para conseguir una dilatación dada. Por ejemplo, de acuerdo con la ley de Hooke, la dilatación de un resorte viene dada por

cuando K la deformación tiende a cero, sea cual sea la fuerza aplicada.
Un primer estudio de los sólidos consiste, por tanto, en hacer el modelo de sólido completamente indeformable, o sólido rígido.
Extensión indefinida.
Todo sólido real está formado por un gran número de partículas materiales que ocupan una extensión finita en el espacio y poseen, en conjunto, una forma definida. Habrá puntos del espacio que estarán ocupados por alguna partícula material y habrá puntos en los que no habrá partícula alguna, bien porque se hallen en el exterior del sólido real, bien porque se encuentren en los intersticios entre las partículas materiales.
Sin embargo, desde el punto de vista del análisis de las velocidades y aceleraciones de un sólido, objeto de este tema, no necesitamos considerar este tamaño finito, ni la forma de los sólidos. Podemos suponer un sólido ideal extendido a todo el espacio, cuya distribución de velocidades es la correspondiente al sólido real que estemos estudiando. Al aplicar este sólido ideal a un caso concreto, basta tener en cuenta que para aquellos puntos exteriores (o interiores) al sólido en los que no hay partículas de este, no tiene sentido asignarles una velocidad.
Un sólido ideal queda entonces identificado por un cierto sistema de referencia, y cada punto del espacio, sean cuales sean sus coordenadas, puede tratarse como parte del sólido.
No hay comentarios:
Publicar un comentario